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Abstract

This paper proposes a new way of looking at productive vocabulary in L1 and L2 
speakers. An experiment was conducted where 160 participants provided six words 
for five different picture prompts they were presented with. Data from this minimal 
vocabulary test was analysed using Bayesian statistics in order to decide whether a set 
of responses were generated by an L1 speaker or by an L2 advanced learner. Results 
obtained provide some interesting insights into the viability of minimal vocabulary 
tests (small sets of words can carry large amounts of information on vocabulary use), 
as well as some indications of how Bayesian methods could help us explore productive 
vocabularies of L2 speakers at different proficiency levels.

Keywords: Bayesian statistics, L2 learning, minimal vocabulary tests, productive 
vocabulary, vocabulary testing.

Resumen

Este artículo propone una nueva forma de considerar el vocabulario productivo 
en hablantes nativos y aprendices de segundas lenguas. Se realizó un experimento en 
el que 160 participantes proporcionaron seis palabras para cinco imágenes diferentes 
que se les presentaron. Los datos de esta prueba mínima de vocabulario se analizaron 
utilizando estadística bayesiana para decidir si un conjunto de respuestas fue generado 
por un hablante nativo o por un aprendiz de nivel avanzado. Los resultados obtenidos 
ofrecen ideas interesantes sobre la viabilidad de las pruebas mínimas de vocabulario 
(un pequeño número de palabras puede proporcionar gran cantidad de información 
sobre el uso del vocabulario), así como algunas indicaciones de cómo los métodos 
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bayesianos podrían ayudarnos a explorar los vocabularios productivos de hablantes de 
idiomas a distintos niveles de competencia. 

Palabras clave: Estadística bayesiana, aprendizaje de segundas lenguas, pruebas 
mínimas de vocabulario, vocabulario productivo, test de vocabulario.

1. Introduction

In L2 vocabulary research, a distinction between receptive and productive 
vocabulary knowledge has often been made: we usually assume that receptive vocabulary 
involves being able to recognize and understand a word when it is encountered in 
listening or reading, while productive vocabulary means being able to use it in speech 
or writing. There is also a general agreement by the research community that receptive 
vocabularies tend to be bigger than productive vocabularies, as reception precedes 
production (e.g. see Melka, 1997; Webb, 2008). Receptive vocabulary size has been 
object of study for a very long time and several tests have been proposed to measure this 
dimension, namely multiple choice tests, for example the Vocabulary Levels Test (VLT: 
Nation, 1990; Schmitt, Schmitt, & Clapham, 2001; Webb, Sasao, & Balance, 2017) 
and the Vocabulary Size Test (VST: Nation & Beglar 2007; Coxhead, Nation, & Sim, 
2014) or yes/no tests (Meara & Buxton, 1987) such as V_YesNo (Meara & Miralpeix, 
2015b). However, productive vocabulary size has been largely unexplored, which is 
partly due to the need for new assessment methods. Different approaches have been 
taken in an attempt to measure productive vocabulary size. So far, (1) we are able to 
describe the sort of vocabulary learners produce in a speaking or writing task; (2) we 
can measure ‘controlled productive vocabulary size’ when learners are asked to provide 
a specific word given its first letters; (3) we can derive scores from word associations tests 
or lexical availability tasks that may give an idea of how big vocabularies are and (4) we 
can use mathematical methods typical of other fields, such as biology, to estimate the 
amount of words students of a language may know productively. Nevertheless, these 
approaches have also raised several concerns, as we will see in sections 1.1-1.5 below. 
Therefore, in section 2 we propose a new method to explore productive vocabulary sizes 
following Bayes’ theorem. Our aim in this paper is to evaluate the Bayesian approach 
by analysing its potential for distinguishing between L1 and L2 speakers on the basis of 
very few words, which were produced to describe a set of picture prompts (sections 3-5). 

1.1. The Lexical Frequency Profile

One of the first attempts to characterise learners’ productive vocabulary is Laufer 
and Nation’s Lexical Frequency Profile -LFP- (Laufer & Nation, 1995). The operation 
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of the LFP is essentially very simple: LFP takes a raw text as input and returns as output 
a profile of the text in terms of the frequency distribution of its words. Laufer and 
Nation suggest that a profile based on four frequency categories is useful - the four 
categories being based on Nation’s earlier work on word lists for L2 learners (Nation, 
1984). Category 1 consists of the 1000 most frequent words in English as defined by 
Nation’s lists; category 2 consists in the second 1000 most frequent words; category 
3 consists of words in the University Word List (Xue & Nation, 1984); category 4 
includes any word not found in the previous three lists. It should be acknowledged, 
though, that Laufer and Nation’s profiles are not particularly easy to work with: they 
describe a learner’s output as a four point profile, rather than as a single measure, 
and it is difficult to summarise the data that they encapsulate in an economical and 
transparent way. Furthermore, rather than predicting testees’ lexical proficiency, the 
LFP describes the kind of words testees use in any piece of oral or written data. 

1.2. Controlled productive vocabulary 

Laufer (1998) makes a distinction between controlled productive vocabulary and 
free productive vocabulary. She defined a test of controlled productive vocabulary 
as one that “entails producing words prompted by a task” (e.g. when the first two 
letters of a word in the context of a sentence are provided to the student), whereas 
free productive vocabulary “has to do with using words at one’s free will, without 
any specific prompts for particular words” (1998: 257). Laufer and Nation (1999) 
developed a test to assess the former, by using the same words as in the VLT receptive 
vocabulary test. In this case, the test-takers responses are constrained by providing the 
first few letters of the expected response, as in the example below:

The house was su______ by a big garden. (surrounded)
However, assessing free productive vocabulary is much more challenging, as 

research on the topic has clearly evidenced.

1.3. Vocabulary size from word association and lexical availability tasks 

Although word association tests (Meara & Fitzpatrick, 2000) or lexical availability 
tasks (Roghani & Milton, 2017) were not first devised for this purpose, data from these 
tasks typically consist of L2 words that could be profiled using standard vocabulary 
assessment tools such as Range (Heatley, Nation & Coxhead, 2002). For example, in 
lexical availability tasks learners are asked to name as many words as they can from a 
prescribed category, such as food, parts of the body, animals or transport (Jiménez Catalán, 
2014). The learner profiles obtained from learners’ answers could provide a picture of 
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the scope of a testee’s productive vocabulary, as shown above. However, more research 
is needed on the extent to which these profiles might be good indicators of productive 
vocabulary knowledge (Fitzpatrick & Clenton, 2017). 

1.4. The capture-recapture method: V_Capture

V_Capture is a computer program based on the idea developed by biologists 
interested in counting the number of species in a particular area by capturing and then 
recapturing animals in traps on a number of different occasions. This process is similar 
to comparing the words produced in a particular task over several performances. 
Mathematics uses the proportion of animals captured (in the case of vocabulary 
that would equal words used) on both occasions to estimate the number of animals 
or species being studied (Meara & Olmos Alcoy, 2010). In spite of the fact that the 
program computes Petersen Estimates (and thus provides an estimate of vocabulary 
size), there are several problems with these estimates for continuous texts, and more 
plausible results can be obtained from wordlists rather than from texts (Meara & 
Miralpeix, 2017). Interesting work on the capture-recapture method can also be found 
in Williams, Segalowitz and Leclair (2014).

1.5. A productive vocabulary size estimator: V_Size

As it is problematic to assess total productive vocabulary size, it may be more 
suitable to compare relative vocabulary sizes, such as the vocabulary someone uses for 
a particular task compared to what others (e.g., NS or learners at different proficiency 
levels) use when performing the same tasks. A range of different tasks, such as cartoon 
storytelling or picture description, may be needed for this purpose, and tools using 
different estimation methods can help researchers obtain reliable estimates. Estimates 
by V_Size (Meara & Miralpeix, 2015a) are based on the Power Law, a ranked distribution 
found not just in language but also in other physical and biological phenomena like 
earthquake size or social network connectivity. The program assumes that certain 
words in language (in high frequency bands) are more frequent than others (in low 
frequency bands) and that there is a direct relationship between the number of times a 
word occurs in a corpus and its rank in a frequency list generated by the corpus. Thus, 
it allows researchers to go beyond the mere shape of the frequency profile generated 
by a text and enquires into what the profile tells us about the size of the productive 
vocabulary of the person who produced the text. As noted by Castañeda-Jiménez 
and Jarvis (2014: 501), V_Size “is the only freely available computer program we [the 
authors] know of that outputs estimates of learners’ productive vocabulary based on 
the texts they produce”. 
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While V_Size may give us good indications in the future of the vocabulary known 
productively for certain tasks, it would also be very useful for us to determine learners’ 
proficiency level from a sample of words they know productively. A first step in this 
direction would be trying to distinguish between native speakers (NS) and advanced 
learners on the basis of very few words, which is what we will try to do in this paper. 

2. Bayes theorem and its applicability to vocabulary assessment

As noted by Miralpeix (2020), among others, assessing productive vocabulary 
always involves eliciting a set of words from learners and inferring from this sample the 
size of the learners’ repertoire, i.e. how many words they would be able to retrieve from 
memory without seeing them written or hearing the spoken forms. All estimations are 
based on probabilities, as it is impossible to elicit from learners all the words they know 
productively in an L2 (unless they are at the very first stages of learning a language and 
know very few words). 

Up to now, the mathematical procedures that we have used for productive 
vocabulary measurement have relied on analysing learners’ data using proportions (e.g. 
in the capture-recapture method, see section 1.4) or comparisons of rank distributions 
with curve-fitting (e.g. in V_Size, see section 1.5). It has also been observed that the 
more a learner speaks (or writes), the more capable we are of making inferences about 
his/her lexical knowledge, as every word introduces new information that can help us 
make guesses about his/her level. It would be really useful if we could formalise guesses 
of this type and one way of doing this is to apply Bayesian statistics to the data. 

The immediate background to the work we present in this paper is an earlier 
study (Meara & Miralpeix, 2017) in which we asked L1 Spanish and Catalan learners 
of English to generate a set of ten adjectives in response to a cartoon stimulus like the 
one shown in Figure 1. This apparently simple task turned out to be quite difficult, 
even for advanced learners. 
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Figure 1: The cartoon figure used in Meara & Miralpeix (2017).

The main focus of our research at the time was how similar learners’ response sets 
were. We will not discuss this work here other than to say that the cartoons generated 
a very large number of disparate responses, and that a response set generated by 
advanced L2 speakers would typically share just over two words with another response 
set from the same group of participants. Some examples are provided in Table 1. These 
responses were made by first language Catalan or Spanish learners of English.

Table 1: Some example response sets made to Figure 1.

NNS001,slim,intelligent,serious,tall,big_headed,angry,lonely,bad_tempered,strict,helpful
NNS002,smart,formal,strict,serious,slim,bad_tempered,intelligent,thoughtful,impatient,rude
NNS003,big_headed,tall,ugly,slim,bald,serious,shy,open_minded,young,impartial
NNS004,ugly,short,big_headed,evil,strange,bad_tempered,scary,angry,lonely,moody
NNS005,grumpy,surprised,big_headed,lunatic,creepy,dirty,stinky,weird,adult,ugly

While working with these data, we noticed that we were often able to decide 
whether a set of responses was generated by an L2 learner or an L1 speaker. Obviously, 
the L2 speakers sometimes produced responses that were easily identifiable as learner 
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errors, but leaving responses of this kind aside, we noticed that some words were more 
likely to be used by learners than by native speakers, and vice versa. Some words were 
almost exclusively used by one group rather than the other, while other words were 
somewhat more likely to be used by one group. For the stimulus picture in Figure 1, the 
two groups generated a total of 650 different words, which can be divided into three 
categories: words used by both groups of participants (shared words: 30%), words used 
predominantly by the L1 participants (L1 words: 46%) and words used predominantly 
by the L2 participants (L2 words: 24%). With practice, one becomes fairly good at 
guessing whether a data set was generated by an L1 speaker or and L2 learner. 

One way to formalise this intuition is by means of Bayes’ Rule (McGrayne 2011). 
Bayes’ Rule is a mathematical procedure which allows us to change our estimate of 
something being true, in the light of additional evidence. This approach has not been 
popular in language acquisition studies, although recently Norouzian et al. (2018) 
introduced the application of Bayesian methods to various research designs, and Pearl 
and Goldwater (2016) and Zinszer et al. (2018) used Bayesian inference models to 
analyse L1 acquisition. Bayes theorem has mostly been used in situations where data 
is partial and difficult to interpret - naval searches, medical diagnoses, face recognition 
and spam filtering, to name but a few. This last example is particularly interesting for 
us, as the best spam filters rely on a comparison of the words typically used in spam 
emails, and the words used in bona fide emails - a comparison that is not a million 
miles away from the problem we are faced with when we try to assess the vocabularies 
of L2 speakers.

The approach is usually described as follows:

P(A|B) = [P(B|A) P(A)] / P(B)

Which tells us:  how often event A happens given that B happens, written P(A|B), 

When we know:  how often event B happens given that A happens, written P(B|A)

  and how likely A is on its own, written P(A)

  and how likely B is on its own, written P(B)

Although the approach has not been used in vocabulary assessment, Bayes’ rule 
could help us predict proficiency levels from peoples’ productive vocabularies. For 
instance, it can give us information on the chance a set of words being really from an 
L2 learner or a NS taking into account the words that they produce in a test, as there 
are words with higher chances of appearing in L2 learners’ sets than in NS sets. In this 
case:
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Our Event A: The set is produced by an L2 learner 
Our Event B: The presence of certain words

Then:
P (L2 | words) = [P(words | L2) P(L2)] / P(words)

By making this filtering, based on updating probabilities, we could know, for 
example, if a set has an 85% chance of being produced by an L2 learner (then, it 
probably is) or if it has a 10% (then, it probably has been produced by a NS). 

3. The study

3.1. Research question

In the light of the previous research on measuring productive vocabularies, it 
would be interesting to explore the potential of Bayesian statistics to correctly identify 
different proficiency levels from a set of words provided by participants at these levels. 
In this paper, the research question that we try to answer is the following: 

How can a Bayesian approach help in distinguishing between NS and advanced 
English learners from a small set of words they provided for the same picture stimuli?

3.2. Method

3.2.1. Participants

Two groups of 100 test participants were assembled: a group of 18-21 year-
old L1 English students at Swansea University (mean age 20.1), and a group of L1 
Spanish/Catalan students of the same age range (mean 20.3) at an advanced level at 
the University of Barcelona. The final sample for the present study consists of 160 
participants (80 per group). In the NS group there were 53 females and 27 males, 
and 59 females and 21 males in the L2 learners’ group. These learners were in the 
third year of English Studies, a degree on English Linguistics and Literature taught in 
English since the first year. At the moment of data collection, they had a C1 level and 
a 30% of the sample had been abroad to English speaking countries for a month or 
less. Although no placement test was conducted for the purpose of this study, other 
cohorts at this level have been shown to have receptive vocabulary sizes between 6,500-
7,000 words. 
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3.2.2. Instruments

A set of fifty cartoons was commissioned in the same style as the cartoon that 
appears in Figure 1. Ten of the cartoons depicted older men, ten depicted older 
women, ten depicted younger men, ten depicted younger women and ten depicted 
young children. Five cartoon pictures were selected: an older man, an older woman, 
a young man, a young woman and a child. The aim for selecting these five (shown in 
Figure 2) was that they looked as different as possible so that testees had a high chance 
to provide enough words for each, without repeating any. 

Figure 2: The stimulus pictures used in the study.

3.2.3. Procedure

Participants were given the picture set and asked to provide six adjectives that 
might describe the person in each picture (no examples or training were provided). 
They were asked to write the words on the dotted lines after the prompts ‘Neville is …’, 
‘Margaret is…’, etc. 

It should be noted that, in some ways, this approach is similar to that followed in 
the productive tests we mentioned earlier (e.g. lexical availability tasks), in the sense 
that we will be working with relative vocabulary sizes, i.e. the vocabulary someone uses 
for a particular task compared to what others use when performing the same task. 
Therefore, the approach will also be limited in the insight it provides about vocabulary 
proficiency ‘in general’.

Not all participants managed to provide six answers for all the pictures (the L1 Ss 
in particular often produced a phrase rather than the single word that was requested). 
From the original 200 Ss, we managed to construct two sets of 80 Ss who generated six 
words for each of the five pictures. These groups were divided into two. For each L1 we 
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set up a group of 50 Ss whose data was used to establish a reference file for the group. 
The remaining 30 Ss were set aside to be used an evaluation group.

Next, for each reference group, we identified all the word types generated in their 
responses, and from this raw data we were able to identify word types used by both 
groups (shared words), words which were used only by the L1 group, words which were 
used only by the L2 group and singletons which occurred only once in the data set.

The question we then ask is whether these data can reliably predict the provenance 
of a new response set. In order to test this idea, we used the Bayesian approach 
described above to evaluate the 60 response sets that were left out of the analysis – 30 
L1 speakers and 30 L2 speakers. For each response set, we estimated the probability 
of its being produced by an L1 speaker. Probabilities greater than 0.6 were taken to 
indicate that the data were produced by an L1 speaker, while probabilities below 0.4 
were deemed to indicate that the data comes from an L2 speaker. Data sets where the 
final probability lies between 0.4 and 0.6 are deemed to be undetermined. 

3.2.4. Data analysis

As Bayesian statistics is probably unfamiliar to most readers of this journal, we 
will explain the approach in some detail using as an example a data set of 10 words:

weird, unpredictable, old, angry, clever, worried, intense, interested, kind, 
thoughtful

Given raw data from suitable groups of participants, we can draw up a table which 
shows what we can expect of an L1 participant and an L2 participant in this task. In 
this particular case, we would expect about 75% of the responses generated by L1 
participants to be shared words, about 20% of their responses to be L1 words and 
perhaps one of their responses to be a typical L2 response. For L2 speakers, we would 
expect 82% of their responses to be shared words, about 13% of their responses to be 
typical L2 words and perhaps one of their responses to be a typical L1 word. These 
response patterns look fairly similar (See Table 2), but taken together, the differences 
are large enough to allow us to ascribe an individual data set to the L1 group or the L2 
group with a fair degree of confidence.
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Table 2: The composition of the L1 and L2 data sets

Shared Responses L1 Responses L2 Responses

L1 participants 75% 20% 5%

L2 participants 82% 5% 13%

Figure 3 shows how this works in practice. A given response set can either belong 
to an L1 speaker or an L2 speaker. Assuming that we do not know which answer is 
correct at the very beginning, we first assign both outcomes a probability of .5, as we 
start from a 50/50 hypothesis. Next, we look at word 1 in the response set (which is the 
word weird in example) and carry out the calculations shown in Table 3.

Table 3: Recomputing a probability in the light of new data

1. Find the appropriate column in Table 2. As an example we take weird, from 
the data set above. As it is an L2 word, so we work with the figures in column 3.

2. Multiply our current NS estimate by .05            .5*.05 =  .025   
3. Multiply our current NNS estimate by 0.13         .5*.13 =  .065

4. Rescale the new probabilities so that they sum to 1.   .025+.065 = .090

new NS estimate:                                     .025/.090 = .278  
new NNS estimate:                                  .065/.090 = .722   

Figure 3 shows, first of all, how the information provided by weird changes our 
assessment of whether this data set is generated by an L1 speaker or an L2 speaker: 
taking weird into account, it now seems slightly more likely that we are dealing with 
an L2 speaker.
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Figure 3: Changes in confidence as more words are added to the data set

Next, we repeat the steps detailed in Table 3 using the new probabilities that 
resulted from step 3; that is, .278 (the new NS estimate) and .722 (the new NS estimate) 
instead of .5 (which was adopted for the first word in the data set). These steps are an 
implementation of Bayes’ Rule (McGrayne, 2011; Stone, 2013). As our next word in the 
example set is unpredictable, which is a NS word, we use the probabilities in column 
1 of Table 2. Applying the steps in Table 3, we get two new estimates: the L1 speaker 
estimate rises to .625 and the L2 speaker estimate falls to .375.

Finally, applying these steps to all ten of the words in the data set produces a 
convincing result: the probability that this response set is generated by an L2 participant 
is 0.95 (see Figure 3). 

This is a pretty remarkable outcome. We started out with a mere sample of 10 
words, generated to a simple cartoon, and we end up being 95% certain that the 10 
words were generated by an L2 speaker. It is more than a little surprising that such a 
small data set can carry so much information, and allow us to make such confident 
assessments. It can also be observed in Figure 3 that by word 6 we start having a clear 
indication on whether the words were produced by an L1 or L2 speaker, that is why 
we opted for asking participants in the present study to provide six words for each 
stimulus. Therefore, these calculations were made using the six words in each of the 
sets that our participants produced. 
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3.3. Results

In this section we present the results obtained for each of the pictures used in the 
study. For each cartoon we provide some examples from the corpora we gathered, as 
well as the probabilities of response types according to the reference data (corpus), and 
a final assessment on the extent to which participants were classified as NS or learners 
using Bayesian statistics. 

Table 4 shows the data for Shirley, the cartoon of the young woman. Table 4a 
lists the words used to describe Shirley, divided into shared words, L1 responses, L2 
responses and singleton responses.

Singleton responses make up a large proportion of the data (just over half the 
words fall into this category). Table 4b shows the probability of the different response 
types in the reference data set. Table 4c shows the way the test data are classified by the 
Shirley reference data set.

Table 4: Classified data for Shirley

Table 4a: Examples of words in the corpora for Shirley

Shared responses
SURPRISED NICE FREE ACTIVE SWEET CHEERFUL STYLISH THIN SINGLE 
POSITIVE WILD TALKATIVE LOVELY SEXY SMILING DANCER AFRO 
FRIENDLY HAIRY YOUNG CONFIDENT SKINNY FUNNY HAPPY SMILEY 
CURLY CHEEKY FASHIONABLE BLACK CRAZY PRETTY ENERGETIC 
SASSY TOOTHY DANCING EXCITED JOYFUL TALL FEMALE OUTGOING 
EXTROVERT COOL LIVELY

Typical L1 responses
ANNOYING DAME TEETH SINGER LOUD ENTHUSIASTIC JAZZY 
APPROACHABLE FUNKY HAIR SNAZZY BIG_HAIR BUBBLY SMUG 
TEETHY FUN

Typical L2 responses
BIG_MOUTHED HIGH POSH SHALLOW ATTRACTIVE SLENDER OPEN_
MINDED UGLY SENSUAL GOOD_LOOKING SELF_CONFIDENT PLAYFUL 
FASHION CURLY_HAIRED SMART EXPRESSIVE ARTISTIC NERVOUS 
ELEGANT RICH SLIM BEAUTIFUL EXTROVERTED TRENDY WITTY
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Table 4b: Probabilities of a specific response type in the Shirley reference data

Shared responses L1 responses L2 responses singletons

L1 participants .223 .213 .050 .514

L2 participants .194 .050 .247 .509

Table 4c: Discrimination between the 60 response sets for the Shirley reference file

Actual evaluation Judged to be L1 spkr. undecided  Judged to be L2 spkr.

L1 speaker response set 23 6 1

L2 speaker response set 4 5 21

This cartoon is clearly very good at distinguishing between data sets generated by 
the two groups. Only one L1 participant is incorrectly classified, while 23 L1 speakers 
are correctly identified as such. For the L2 participants, the classifications are not quite 
so good: four L2 participants are incorrectly classified, but 21 are correctly identified 
as L2 speakers, with only five undecided. A chi squared analysis suggests that this 
distribution is very unlikely to have arisen by chance (χ2=43.5; p<.001).

On the face of things, this looks like a very satisfactory result. Even when we 
simplify the test task by asking participants to produce only six words, the approach 
can correctly classify almost 75% of the response sets, and only one of the L1 speakers 
is misclassified. The L2 group contains a number of very high-level participants, and 
so we might expect the classifier to make some errors where an L2 speaker is judged to 
be performing like a L2 speaker on this task. The group of four L2 speakers who are 
misclassified seems like an allowable error.

Unfortunately, the results of the four remaining tasks are rather less compelling. 
Table 5 shows the data for Margaret – the older woman. The figures in Table 5b are 
quite close to the corresponding figures in Table 4b. The main difference is that both 
groups in the reference data set are about equally likely to generate one of the shared 
responses. This makes the classification rather more difficult, and Table 5c indicates 
that Margaret is indeed less good at discriminating between the groups than Shirley 
was. Here, 37 of the test cases were correctly identified as L1 or L2 speakers, but 
twelve L2 speakers were incorrectly classified as L1 speakers, and four L1 speakers were 
classed as an L2 speaker. Seven cases were undecided. A chi squared analysis suggests 
that this distribution is unlikely to have arisen by chance (χ2=10.9; p<.01). 
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Table 5: Classified data for Margaret

Table 5a: The words participants use to describe Margaret

Shared responses
WAVING STUDIOUS FOREHEAD HARD_WORKING ENTHUSIASTIC 
ADULT SMILING CALM SENSIBLE QUIET HAPPY BLIND WELCOMING 
GLASSES GENEROUS INTELLIGENT NICE MOTHER SWEET OLD 
GENTLE CARING STRICT CHEERFUL FUNNY MIDDLE_AGED POSITIVE 
APPROACHABLE CLEVER WOMAN KIND SHY MOTHER_LIKE FRIENDLY 
SMART FEMALE CONSERVATIVE TEACHER

Typical L1 responses
BOOKWORM HAIR SMILEY WAVY GROOMED HELPFUL CASUAL 
DANCING KNOWLEDGEABLE PARTIALLY_SIGHTED KEEN LIBRARIAN 
CAT_LOVER PROFESSIONAL INNOCENT LOVING SIMPLE MOTHERLY

Typical L2 responses
SENSITIVE WISE, SHORT_SIGHTED PATIENT NERVOUS MATURE 
LOVELY RELAXED TALKATIVE EMPATHIC NAIVE EASY_GOING SHORT 
BEAUTIFUL OLD_FASHIONED CHARMING STRAIGHTFORWARD 
SYMPATHETIC POLITE FAMILIAR CURIOUS RELIABLE PRETTY MIDDLE_
AGE OPEN_MINDED WELL_MANNERED RESPONSIBLE HONEST

Table 5b: Probabilities of a specific response type in the Margaret reference data

Shared responses L1 responses L2 responses singletons
L1 participants .233 .166 .050 .551
L2 participants .216 .050 .283 .451

Table 5c: Discrimination between the 60 response sets for the Margaret reference file

Actual evaluation Judged to be L1 spkr. undecided Judged to be L2 spkr.
L1 speaker response set 21 5 4
L2 speaker response set 12 2 16

Neville (Table 6) was fairly good at classifying the data sets, but identified a large 
proportion of undecided cases (15), and incorrectly classified five L1 speakers and seven 
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L2 speakers. Again, the overall distribution was not likely to have occurred by chance 
(χ2=10.7; p<.005), but the relatively large number of undecided cases, particularly for 
the L1 speakers, is a problem.

Table 6: Classified data for Neville

Table 6a: Examples of words in the corpora for Neville

Shared responses
MAN MOUSTACHE TIRED SERIOUS MALE FUNNY ANGRY BORED 
MIDDLE_AGED STRICT SHORT RETIRED ARROGANT BOLD BIG_
HEADED LONELY OLD_FASHIONED SHY CREEPY BAD ELDERLY 
WELL_DRESSED OLD WEALTHY NARROW_MINDED HAIRY RICH WISE 
CONCERNED GRUMPY CLEVER TRADITIONAL SLEEPY INTELLIGENT 
INTIMIDATING BALD TEACHER SAD NICE THOUGHTFUL BORING 
MARRIED

Typical L1 responses
PROPER OLDER QUIET BUSHY PROFESSIONAL STERN BIG_HEAD 
AWKWARD SUIT BALDING MISERABLE INQUISITIVE EYEBROWS 
GRANDAD RUSSIAN SMART SNOBBY

Typical L2 responses
UNFRIENDLY DISTANT RESPECTFUL RESPONSIBLE RUDE ELEGANT 
FAT UGLY EXHAUSTED CLOSE_MINDED THINKING WEIRD FORMAL 
BAD_TEMPERED

Table 6b: Probabilities of a specific response type in the Neville reference data

Shared responses L1 responses L2 responses singletons
L1 participants .250 .206 .050 .494
L2 participants .183 .050 .140 .627

Table 6c: Discrimination between the 60 response sets for the Neville reference file

Actual evaluation Judged to be L1 spkr. undecided  Judged to be L2 spkr.
L1 speaker response set 16 9 5
L2 speaker response set 7 6 17



Bayesian Vocabulary Tests

Vigo International Journal of Applied Linguistics 193

VIAL n_18 - 2021

Table 7 shows the data elicited by Kevin, the picture of a young man. This 
cartoon was not very good at classifying the data sets. The usual chi squared test finds 
that the classifications were on the whole correct (ć2=8.7; p=<.05), but a substantial 
number of cases were classified incorrectly (fully twelve of the L2 cases were classified 
as L1 speakers, and six of the L1 speakers were classified as L2 speakers. Eight of the 
L2 speakers were undecided. The distinguishing feature here seems to be that the L1 
speakers produced a very low number of singleton responses, and were very likely to 
produce a response which was also used by L2 speakers.

Table 7: Classified data for Kevin

Table 7a: Examples of words in the corpora for Kevin

Shared responses
SERIOUS SMART UGLY MYSTERIOUS INTELLIGENT EXTROVERT 
SUSPICIOUS RUDE HAPPY INTERESTED WEIRD JUDGMENTAL SCARY 
SEXIST SKINNY MISCHIEVOUS WORKER HUNCHBACK ANGRY MANIC 
COMFORTABLE POOR BORING STARING RURAL FUNNY INTIMIDATING 
ADULT FARMER WORKING BIG_HEAD MAN ODD SMILING GRUMPY 
CREEPY SHY SILLY QUIET UNHAPPY
 
Typical L1 responses
GRITTY CONTENT SMIRKING UNKEMPT DANGEROUS INQUISITIVE 
FRINGE LAD TOUGH SIMPLE LONELY CONFIDENT HARD STRANGE 
COMMITTED SLY HIGH_TROUSERS GREASY UNTRUSTWORTHY 
UNTIDY LOST PAINTER OLDER SARCASTIC DICEY SHADY RUGGED 
SCRUFFY UNFRIENDLY

Typical L2 responses
CURIOUS INTROVERTED TALL FRIENDLY HAIRY BLONDE THINKING 
STUBBORN BIG_HEADED PLOTTING LAZY ARROGANT BORED EASY_
GOING SELFISH HONEST SHORT WHITE NAIVE GOOD_LOOKING 
UNTRUSTING STUPID INTERESTING PROUD MIDDLE_AGE ILLITERATE 
POLITE SAD HANDSOME
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Table 7b: Probabilities of a specific response type in the Kevin reference data

Shared responses L1 responses L2 responses singleton
L1 participants .423 .236 .050 .291
L2 participants .277 .050 .264 .409

Table 7c: Discrimination between the 60 response sets for the Kevin reference file

Actual evaluation Judged to be L1 spkr. undecided  Judged to be L2 spkr.

L1 speaker response set 16 8 6

L2 speaker response set 12 2 16

The final set of results was generated in response to the child cartoon, Cory. The 
data is shown in Table 8. This picture was by far the worst of the five cartoons, in that 
it failed to make clear decisions for more than half the response sets (34 response sets 
were classified as “undecided”). Only six cases were wrongly classified by Cory: two L1 
speaker response sets were incorrectly classified as L2 speakers, and four L2 response 
sets were identified as L1 speakers. Again, a chi squared analysis suggests that the 
distribution of the classifications is unlikely to be due to chance (χ2=8.02; p=<.05), but 
the overall success rate can only be described as poor.
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Table 8. Classified data for Cory

Table 8a: Examples of words in the corpora for Cory

Shared responses
CHEERFUL CREEPY MALE EXCITED LAUGHING SMART NAUGHTY 
TEENAGER SURPRISED CURIOUS CUTE CHILDISH BOLD IMMATURE 
OUTGOING ACTIVE ENTHUSIASTIC MISCHIEVOUS VULNERABLE 
INNOCENT EARS LIVELY EXTROVERT SHORT JOYFUL ENERGETIC 
FRIENDLY PLAYFUL YOUNG NAIVE HAPPY SMALL CHILD UGLY FUNNY 
SMILEY CHEEKY

Typical L1 responses
MESSY FRECKLES ANNOYING TROUBLE BOY SPIKY_HAIR BIG_HEADED 
BIG_FOREHEAD JOLLY INQUISITIVE NUISANCE SPORTY LOUD WILD 
FUN

Typical L2 responses
SMILING EXTROVERTED EASY_GOING CRAZY SPORT SCARY CHATTY 
SYMPATHETIC STUBBORN HANDSOME SWEET CHARMING BLUE_EYED 
OPEN STRANGE GOOFY KIND MEAN NERVOUS SILLY THRILLED LITTLE 
IMPATIENT

Table 8b: Probabilities of a specific response type in the Cory reference data

Shared responses L1 responses L2 responses singletons
L1 participants .173 .173 .050 .604
L2 participants .173 .050 .183 .591

Table 8c: Discrimination between the 60 response sets for the Cory reference file

Actual evaluations Judged to be L1 spkr. undecided  Judged to be L2 spkr.
L1 speaker response set 10 18 2
L2 speaker response set 4 16 10
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4. Discussion

The present study was set to explore how a Bayesian approach could help in 
distinguishing between NS and advanced English learners from a small set of words 
provided for the same picture stimuli. According to our results (see Tables 4-8 above), 
the picture stimuli in the study were actually very inconsistent in how they categorised 
the response sets. We originally expected that the pictures would tend to categorise 
an individual test-taker’s response sets in the same way, but again this was not the 
case. None of the sixty test cases was consistently categorised by all five tasks – largely 
because the Neville and Cory pictures produced relatively large numbers of undecided 
classifications. If we disregard these two sets of results, we can combine the data from 
the three best classifiers into a “majority verdict” for each test case. This data is shown 
in Figure 4. Using this approach, the 60 test cases were generally well-categorised: 
most response sets were correctly ascribed to the correct group, with only one L1 
response set being classified as an L2 example. A small number of response sets were 
classified as undecided. This distribution is better than chance (ć2= 25.1; p<.001), but 
it is clearly not as good as we might have hoped. The main problem here seems to be 
that a small number of the L2 speakers seemed to generate response sets that were 
reliably classified as coming from L1 speakers, that is, their choice of words is more 
characteristic of the choices made by the L1 group. This may not in fact be such 
a serious problem as we first thought – it may just be a reflection of the very high 
standard of proficiency enjoyed by some of the L2 participants. If that is the case, then 
the real problem cases are the instances where the program classifies an L1 participant 
as an L2 speaker. Figure 4 shows that only 1 L1 speaker was mis-classified in this way 
when the three best data sets are taken into account. We should also bear in mind that 
there is always some error rate in estimations, especially if we conceive ‘nativelikeness’ 
as a binary category (Vanhove, 2020). 
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Figure 4: The “majority verdict” from the three good discriminator cartoons 
(Shirley, Neville and Margaret). L1 response sets are shown in black, L2 response sets 
are shown in grey

146  

 
 
 
The present study also confirms the idea that small sets of words carry very large amounts of 
information about L2 speakers’ vocabulary use. However, the approach used does not work as well 
as we expected it to do. With hindsight, it seems that the decision to ask participants to provide only 
six words in response to the picture stimuli was a tactical error. It resulted in a fairly high number of 
cases where the analysis was unable to make a confident categorisation. It also allowed the 
confidence judgments to be strongly influenced by a single instance of an “inappropriate” response. 
For example, if an L2 speaker generated just one response that was normally generated by L1 
speakers, then the confidence estimate would be skewed in the direction of an L1 assessment. If this 
“inappropriate” word was introduced as the fifth or sixth response, then further evidence would not 
be available to correct this error. With a larger number of words in the response sets, errors of this 
sort are normally corrected. Some simulation work with artificially created responses sets suggests 
that responses sets consisting of 10 words are considerably more powerful than smaller response 
sets: they almost always result in a definite decision one way or the other. This is a question on the 
viability of minimal vocabulary tests that should be further explored.  
 
It should be borne in mind that minimal vocabulary tests of this kind are constrained by the task we 
ask testees to perform. Therefore, the more information we have about how participants approach 
the task and the type of output it produces in large populations, the better it will be for the 
interpretation of the scores. In this study we chose these five pictures because we thought that the 
caricature cartoons would generate a fairly narrow range of responses, especially when we 
instructed participants to supply us with single-word adjectives. This turned out not to be the case – 
about 50% of the responses were singleton responses generated by only one participant. More 
importantly, perhaps, a number of respondents gave us descriptors which focussed on the style of 
the cartoon, rather than the person who was being depicted. BIG HEADED and BIG EARED both 
appeared surprisingly often in the response sets.  It is not clear whether the same problem would 
arise if we used other kinds of visuals. Equally surprising was the finding that the cartoons differed 
quite markedly in the kinds of words that they elicited. We had originally thought that the stylistic 
similarities between the pictures would result in response sets that were to a large extent 
comparable, but again this turned out not to be the case. For all five stimulus pictures, the number 
of singleton responses was considerably larger than we had found in our pilot studies, and 
consequently, the number of response words that could be classified as typical L1, typical L2 and 
shared words was correspondingly reduced. Typical L1 words, for example, accounted for only 
20% of the L1 speaker responses, and typical L2 responses accounted for only 18% of the L2 
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The present study also confirms the idea that small sets of words carry very large 
amounts of information about L2 speakers’ vocabulary use. However, the approach 
used does not work as well as we expected it to do. With hindsight, it seems that the 
decision to ask participants to provide only six words in response to the picture stimuli 
was a tactical error. It resulted in a fairly high number of cases where the analysis was 
unable to make a confident categorisation. It also allowed the confidence judgments 
to be strongly influenced by a single instance of an “inappropriate” response. For 
example, if an L2 speaker generated just one response that was normally generated 
by L1 speakers, then the confidence estimate would be skewed in the direction of 
an L1 assessment. If this “inappropriate” word was introduced as the fifth or sixth 
response, then further evidence would not be available to correct this error. With a 
larger number of words in the response sets, errors of this sort are normally corrected. 
Some simulation work with artificially created responses sets suggests that responses 
sets consisting of 10 words are considerably more powerful than smaller response sets: 
they almost always result in a definite decision one way or the other. This is a question 
on the viability of minimal vocabulary tests that should be further explored. 
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It should be borne in mind that minimal vocabulary tests of this kind are 
constrained by the task we ask testees to perform. Therefore, the more information we 
have about how participants approach the task and the type of output it produces in 
large populations, the better it will be for the interpretation of the scores. In this study 
we chose these five pictures because we thought that the caricature cartoons would 
generate a fairly narrow range of responses, especially when we instructed participants 
to supply us with single-word adjectives. This turned out not to be the case – about 
50% of the responses were singleton responses generated by only one participant. 
More importantly, perhaps, a number of respondents gave us descriptors which 
focussed on the style of the cartoon, rather than the person who was being depicted. 
BIG HEADED and BIG EARED both appeared surprisingly often in the response 
sets. It is not clear whether the same problem would arise if we used other kinds of 
visuals. Equally surprising was the finding that the cartoons differed quite markedly 
in the kinds of words that they elicited. We had originally thought that the stylistic 
similarities between the pictures would result in response sets that were to a large extent 
comparable, but again this turned out not to be the case. For all five stimulus pictures, 
the number of singleton responses was considerably larger than we had found in our 
pilot studies, and consequently, the number of response words that could be classified 
as typical L1, typical L2 and shared words was correspondingly reduced. Typical L1 
words, for example, accounted for only 20% of the L1 speaker responses, and typical 
L2 responses accounted for only 18% of the L2 speaker responses. Shared responses 
accounted for around 22% of the responses. However, there was considerable variation 
around these means: 42% of the responses that L1 speakers made to the Neville picture 
were shared responses, and only 29% of their responses were singletons. And both 
groups generated about 60% of singleton response for the Cory picture. Clearly, there 
is an issue of stimulus consistency here which needs to be investigated.

It can also be possible that the two groups may have approached the task from a 
different point of view or used different strategies to provide answers. For example, 
among the NS responses, we have a number of “awkward” responses (e.g. for Shirley: 
singer, teethy), which feel as though they belong to an informal register, whereas some of 
the NNS responses seem to be more “literary”. When checking the items for frequency 
and range, we see that words produced more often by learners (1) appear more frequently 
in the frequency lists, such as the JACET List (Ishikawa et al., 2003) (e.g. young, shy, 
thin), (2) can be more often found in students’ textbooks (e.g. cheerful, talkative, open-
minded, friendly) and (3) can be often cognates (e.g. elegant, relaxed, attractive, extroverted, 
modern…) or borrowings (e.g. fashion). NSs sometimes produce words that learners do 
not typically know or that appear less often in textbooks (e.g. stern, scruffy, bubbly…), but 
we do also find words that tend to be very basic (e.g. quiet, grandad, boy). So both groups 
use a mixture of high and low frequency items, it is not just a matter of frequency or 
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range: there does not appear to be a reliable significant difference between the groups 
in respect of these features. Register does seem to be an important feature, and some 
individual responses are strongly marked for this. However, we do not find that the 
majority of the responses generated by a single individual are characterised in this way.

We also think that the study raises some interesting questions about the use of 
a Bayesian approach to linguistic data of this kind. We have observed there are some 
technical issues that will need to be resolved in the future. In this study, we started out 
with two collections of response sets each generated by 80 test-takers. Each collection 
was split into two: fifty responses sets were used to define a reference corpus, and thirty 
response sets were held back to be used as test cases. Of course, these two numbers 
are arbitrary: we could have split the data in other ways. For example, we could have 
used a set of 25 response sets to establish the reference corpus, and this would have 
left us with 55 response sets to be used for evaluation. Or we could have used a bigger 
number of response sets to establish the reference corpus, and evaluated only a handful 
of test cases. Ideally, we would like to work with a small but reliable reference corpus, 
since this makes it considerably easier to build the reference corpus, and allows us to 
evaluate a larger number of test cases. Unfortunately, we do not know how the size 
of the reference corpus affects the evaluations. We might expect that increasing the 
number of response sets that are used to build the reference corpus would increase the 
number of singleton responses, but exactly how this interaction would work is unclear. 
We might expect that a larger reference corpus would affect the number of response 
words that are “typically” L1 responses or “typically” L2 responses, but it is difficult to 
assess this characteristic in practice. We are currently assembling some very large data 
sets which will allow us to answer these questions with some confidence (see Meara & 
Miralpeix, in preparation).

A more important issue concerns the way we have characterised the four types 
of words in the response sets, particularly the singleton responses. In this paper, we 
have treated any word which appeared only once in the relevant reference corpus 
as a “singleton”, and we have lumped together into a single class words that were 
generated by a single L1 speaker, or a single L2 speaker. Any new word that appeared 
in the test response sets, but not in the reference corpus was classified as a singleton, 
regardless of its characteristics. It is probable that this classification is just too broad, 
and that a closer examination of the singletons generated by the L1 group and by the 
L2 group would reveal some subtle differences between the groups. For example, the 
L1 singletons tend to be infrequent words, whereas the L2 singletons are sometimes 
invented words based on cognates. We have not explored this avenue here, as it is 
difficult to automate the process of distinguishing the different types of singletons. 
However, a closer examination of these words would be worthwhile. Simply ignoring 
the singleton problem, and treating words that appear in the reference corpus as L1 
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words or L2 words regardless of how many times they occur would be an even simpler 
solution. This approach would have the added advantage of increasing the proportion 
of “typical” L1 and “typical” L2 words, but again, it is not clear how this approach 
would affect the performance of the program.

A related issue has to do with our criterion for classifying a word as a “typical L1 
word” or a “typical L2 word”. In this study, all words which occur at least two times 
but only in response sets generated by L1 speakers were identified as L1 words, and 
all words which occur at least two times but only in response sets generated by the L2 
speakers were identified as L2 words. However, once again, we are dealing with an 
arbitrary cut-off here. We could have used a rather stricter criterion, in which case the 
number of words identified as “typical” cases would have been much smaller, and we 
would need to introduce a new category of “words which do not occur often” - say, all 
words which occur only once or twice in the reference corpus. We think that this would 
make the classifier program rather less accurate than it is currently. Alternatively, we 
could lower the threshold for describing a word as “typical”, and include all words 
which are generated by only one of the groups. This would increase the number of 
“typical” words, and would allow us to eliminate the entire class of singleton words 
by subsuming them into the “typical L1 word” and “typical L2 word” categories. Our 
guess is that this might be a good way to go in future research of this kind. 

The last technical issue concerns a feature that we have not commented on 
before, but will doubtless have been noted by astute readers. Given that the reference 
corpora used in this study are samples, and not comprehensive lists, there will always 
be occasions when, for example, an L2 speaker uses a word which has formally been 
defined as a “typical L1 word” because it has not appeared as a “typical L2 word” in 
the reference corpus. The question which arises here is how should we deal with these 
cases. The logical solution would be to say that, by definition, L2 speakers do not use 
“typical L1 words”, and therefore the probability of an L2 speakers using a word of this 
type is nil. The problem with this obvious solution is that with these assumptions, and 
working through the steps in Table 3, a L2 response set that contains a single instance 
of a “typical L1 word” will return a value of zero despite the fact that the response set 
was actually generated by an L2 speaker. And once this zero value is found, it cannot 
be changed by any later data because of the way the mathematics works. Obviously, 
we need to avoid this over-determination, and we do this by setting a non-zero value 
to the probability that an L1 word will be generated by an L2 speaker and vice-versa. 
In tables 4-7 we have set these values to 0.05 – i.e. we anticipate that an L2 speaker 
might produce a “typical L1 response” from time to time: usually, slightly fewer than 
one response of this type per response set. This value of 0.05 is actually quite strict, 
and it severely penalises a test-taker who produces “the wrong sort of word”. Ideally, 
we would like this non-null parameter to be an empirically based one, rather than 
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an arbitrary choice. As usual, we do not know how changing the non-null parameter 
from 0.05 to a rather higher figure would affect the way the classification program 
works. We think it should result in fewer incorrect classifications, but that it might 
generate more undecided classifications. This is an issue that we can address using the 
simulation approach mentioned earlier.

5. Conclusion

To sum up, this paper presents an empirical way of measuring productive 
vocabulary. Data from a minimal vocabulary test taken by NS and advanced EFL 
learners was analysed following a Bayesian approach, which was used to decide whether 
the data was generated by an L1 or an advanced L2 speaker. In theory, it seemed a 
good way to put this method to the test, as at high proficiency levels the differences in 
lexis between learners and native speakers may not be obvious (Hellman, 2008), and 
even less in this case with sets of just six words. Therefore, results from the current 
study can inform future research on the suitability of this method to distinguish 
between learners at different proficiency levels, where differences in productive 
vocabulary are more remarkable. This form of assessment could also be very helpful 
for teachers: by obtaining this information from minimal vocabulary tests, they could 
more easily identify students’ weaknesses in vocabulary skills. We think the format 
might be particularly useful in situations where testing events need to be administered 
frequently, as administration of the test in its current format requires only a very short 
time. This is a considerable advantage over more traditional  vocabulary tests. Despite 
this, the data the test provides appears to be rich, and the test format is challenging, 
even for advanced test-takers.

Finally, the work we have reported here has turned out not to be as straightforward 
as we expected and we have identified a number of technical issues that we failed to 
anticipate. In spite of this, we think the idea of assessing productive vocabularies using 
minimal vocabulary tests and Bayesian statistics might be worth of further exploration. 
In particular, we can speculate whether the Bayesian probabilities generated by the 
program correlate with scores generated by the productive vocabulary tests that we 
discussed in our introduction. Work of this sort clearly lies outside the scope of this 
paper, but we think that it would be worth doing work of this kind in future. 
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